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Abstract: A mathematical model is presented to determine the spatial displacement of an end-
effector attached to the human upper limb kinematic chain. The proposed method in-volves the 
successive application of the homogenous rotation matrices associated with each element 
movement to determine the general transfer matrix or the so-called homoge-neous transformations 
matrix. This method is proven to be an error free method for esti-mating the position and orientation 
of an end-effector attached to a kinematic chain. The methodology presented in this paper combines 
a well know mathematical technique used in engineering (in the development of space robots) and 
the anatomical features of the human upper limb to estimate not only the end-effector 3D position 
but also the limb pos-es during a particular displacement. 
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1. Introduction 
The human body is a complex and optimized mechanism able to perform a wide 

range of movements. With preponderance, human body kinematic chains produce 3D 
displacements. This aspect characterizes not only these chains, but the whole body, as 
spatial mechanisms composed of multitude of heterogenous subsystems. Studies in the 
field of biomechanics can be oriented to molecular level [1–4], cellular [5–9], organs [10–
12], thermodynamics [13–15], fluid mechanics [16–19], material science [20–22], limb 
kinematic [23–27] and kinetics [28–30] and so on [31]. As can be seen, in the last half of the 
century, scientists all over the world orientated exponentially their cutting-edge research 
to human body mechanisms. Thus, mathematical modeling plays a main role in the 
development of analytical techniques and technologies not only in engineering [32,33] but 
also in medicine [34–37]. For example, 2D and 3D simulation tools are exclusively running 
on math models. In biomechanics, as in other fields, researchers all over the world are 
constantly working to develop the best techniques in the field.  

Mathematical models represent the foundation of human body positional, kinematic, 
and kinetic analysis. Human gait for example apparently is a symmetrical and 
synchronized action between the left and the right side. However, there is a 
desynchronization between both sides [38]. This desynchronization changes the kinematic 
chains laws of motion. The locomotor system asymmetries are transposed to the upper 
body and especially to the upper limbs that presents a pendulum movement which has 
the aim of balancing the body. Thus, the human body desynchronization can be evaluated 
through graphical and non-graphical methods that are based on mathematical modelling.  

The main contribution of this research paper is using the homogenous 
transformations method (HT method) by taking in consideration the connectivity between 
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joints (number of kinematic elements and degrees of freedom) to improve human motion 
monitoring accuracy. The basic idea is to use HT method for forward kinematics to 
calculate human body position during a particular action. More precisely, the 3D position 
of an end effector attached at the end of the last kinematic element was tracked. HT 
method uses the relative and absolute positions between joints and kinematic elements. 
This linkage constraints to some extent limit the drift errors that sensors can have in 
determining the position vector. Thus, the data provided from such analysis may 
accurately predict if there is imbalance during biped locomotion by comparing data from 
symmetrical kinematic chains. 

2. Results 
The mathematical algorithm presented above was tested in 3 conditions regarding 

the kinematic chain degrees of freedom (2DoF, 4DoF and 6DoF), ten position each. The 
DoF of the presented model can be variated by blocking one or multiple joints, 
respectively movements (θi=0). The lengths of the kinematic elements are presented in 
table 1. These data were measured on a random subject and are input data variables for 
the mathematical model.  

Table 1. Upper limb kinematic elements lengths. 

Humerus length (m) Ulna length (m) Hand length (m) 

0.27 0.29 0.18 

2.1. 2DoF kinematic chain 
Figure 1 describe the end-effector plane motion in a 2D respectively 3D 

representation for the 2DoF case (θ1 and θ4 from table 2). 
The angular ranges of movement after which the kinematic chain was simulated are 

presented in table 2. According to the resulted data, the end-effector trajectory is 
generated by the rotational movements of the shoulder and wrist joints along an axis 
perpendicular to the frontal plane x0O0y0. The movement of the effector is related to the 
origin of the system O0x0y0z0. Thus, the rotational movement along the O0z0 (figure 1 b.) 
axis is described in the plane x0O0y0 (figure 1 a.). All 10 successive positions described by 
the effector are presented in figure 1. 

The movement of the effector is described by the increase of the joint parameters 
followed by the decrease and implicitly the return to the initial state of rest (table 1). The 
final position (table 1 - Pos.10) is overlapped with the initial one (table 1 - Pos.1) when all 
joint parameters are equal to 0O. 

In this subchapter the human upper limb and implicitly the end-effector simulates 
abduction-adduction movement. 

Table 2. The variation of the joint parameters for the 10 successive positions described by the end-
effector in the 2DoF case.  
 

Pos. 1 

(O) 

Pos. 2 

(O) 

Pos. 3 

(O) 

Pos. 4 

(O) 

Pos. 5 

(O) 

Pos. 6 

(O) 

Pos. 7 

(O) 

Pos. 8 

(O) 

Pos. 9 

(O) 

Pos. 10 

(O) 

θ1 0 10 15 20 25 30 40 20 10 0 

θ2 0 0 0 0 0 0 0 0 0 0 

θ3 0 0 0 0 0 0 0 0 0 0 

θ4 0 2,5 5 7,5 10 10 5 5 2,5 0 

θ5 0 0 0 0 0 0 0 0 0 0 

θ6 0 0 0 0 0 0 0 0 0 0 
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(a) 

 
(b) 

 
(c) 

Figure 1. The end-effector trajectory for the 2DoF kinematic chain case: (a) xOy trajectory; (b) xOz 
trajectory; (c) triortogonal representation Oxyz. 

2.2. 4DoF kinematic chain 
In this case the kinematic chain of the human upper limb is a plane chain being 

characterized by 4 degrees of freedom. This implies that 2 degrees of freedom associated 
with abduction – adduction movement are blocked. According to the trajectory, the end-
effector displacement is projected in the sagittal plane (x0O0z0). Thus, the trajectory of the 
end-effector describes flexion-extension movements (all kinematic elements rotate about 
a perpendicular axis, O0𝑦𝑦0, on x0O0z0 plane). This movement is described in figure 2. 
Figure 2 represents the result of the upper limb flexion-extension movements in all joints 
of the kinematic chain (shoulder, elbow, wrist, and fingers). The other possible 
movements, abduction and adduction, being blocked. Table 3 contains information about 
the ranges of motion for each joint. In this case only 4 movements are active (θ2, θ3, θ5 
and θ6) and 2 are blocked. 

Table 3. The variation of the joint parameters for the 10 successive positions described by the end-
effector in the 4DoF case.  
 

Pos. 1 

(O) 

Pos. 2 

(O) 

Pos. 3 

(O) 

Pos. 4 

(O) 

Pos. 5 

(O) 

Pos. 6 

(O) 

Pos. 7 

(O) 

Pos. 8 

(O) 

Pos. 9 

(O) 

Pos. 10 

(O) 

θ1 0 0 0 0 0 0 0 0 0 0 

θ2 0 25 45 55 75 90 45 25 10 0 

θ3 0 20 35 45 90 75 50 25 15 0 

θ4 0 0 0 0 0 0 0 0 0 0 

θ5 0 5 10 15 20 25 20 15 5 0 

θ6 0 1 2 3 4 5 6 3 1 0 
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(a) 
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Figure 2 The end-effector trajectory for the 4DoF kinematic chain case: (a) xOy trajectory; (b) xOz 
trajectory; (c) triortogonal representation Oxyz. 

2.3. 6DoF kinematic chain 
Compared to the other two cases presented previously, the 6DoF kinematic chain is 

more complex in terms of displacement. Because all 6 joints (movements) are active (table 
4), the end-effector trajectory describe projections in all three reference planes (figure 3). 
Thus, this kinematic chain is considered a spatial kinematic chain. 

Table 4. The variation of the joint parameters for the 10 successive positions described by the end-
effector in the 6DoF case.  
 

Pos. 1 
(O) 

Pos. 2 
(O) 

Pos. 3 
(O) 

Pos. 4 
(O) 

Pos. 5 
(O) 

Pos. 6 
(O) 

Pos. 7 
(O) 

Pos. 8 
(O) 

Pos. 9 
(O) 

Pos. 10 
(O) 

θ1 0 10 15 20 25 30 40 20 10 0 
θ2 0 25 45 55 75 90 45 25 10 0 
θ3 0 20 35 45 90 75 50 25 15 0 
θ4 0 2,5 5 7,5 10 10 5 5 2,5 0 
θ5 0 5 10 15 20 25 20 15 5 0 
θ6 0 1 2 3 4 5 6 3 1 0 
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(b) 
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Figure 3. The end-effector trajectory for the 6DoF kinematic chain case: (a) xOy trajectory; (b) xOz 
trajectory; (c) triortogonal representation Oxyz. 

3. Discussion 
The displacement of the human body, regardless of the analyzed kinematic chain, is 

a complex one. Thus, the kinematic chains (lower limbs, upper limbs, trunk, the entire 
body) can perform planar or spatial movements. So kinematic chains can be planar or 
spatial. However, rarely the movements produced by the kinematic chains are exclusively 
planar movements. In this case, only if the aim is to stimulate particular movements such 
as flexion and extension or abduction and adduction.  

The presented model can be adjusted in terms of complexity. It can simulate a planer 
or a spatial kinematic chain. At this moment the model offers the possibility to simulate a 
chain with a wide range of degrees of freedom (from 1DoF to 6DoF). However, it can be 
easily adjusted even to a higher complexity (mode than 6DoF) by adding homogenous 
transformation matrices for the remained possible movements of the human body upper 
limb. The maximum complexity to which this model can be adjusted without considering 
the joints of the phalanges is 10 DoF.  

4. Materials and Methods 

4.1. Homogenous transformation matrix 
The research methodology is presented in a three-stage summarized form according 

to figure 4. The first stage refers to the input data associated with the mechanical system 
in question. These data contain information about the length of kinematic elements (table 
1), types of kinematic joints and angular ranges of motion (tables 2, 3, and 4). Second, was 
developed the mathematical models for the direct kinematic analysis using HT method. 
Thus, the rotation matrices (Ri

i-1), the displacement vectors (di
i-1) and the orientation of the 

local tri orthogonal axis systems (Onxnynzn→Omxmymzm) are deduced for each kinematic 
joint in consideration. Third, a Python script was developed that aims to determine the 
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HT general matrix that contains information about the displacement vector of the end-
effector. 

 
Figure 4. The methodology for determining the position of the effector. 

The input data stage refers to kinematic chain modeling that in biomechanics as in 
machine theory (robotics) requires simplifying assumptions. Thus, the limbs for example 
are kinematic chains assemblies of non-deformable kinematic elements articulated by 
simple rotation joints. In the human body there are various types of joints (cylindrical, 
spherical, translational, etc.). For joints that allow two or three rotations around the 
reference system simplifying hypothesis is accepted. This assumption requires that any 
rotation about an axis be considered as a cylindrical joint. The spherical joint (hip joint, 
shoulder joint) is considered as a superposition of three cylindrical joints. In this case, the 
rotation axes form a triortogonal system [39]. 

A body is completely determined in a triortogonal system (direct kinematics) if the 
position of the origin of the attached local reference system and the directions of its axes 
with respect to the global reference system are known. Any point of the body is 
positionally determined if the attached axis system represented by a homogeneous 
transformation matrix Hn

m is known, where m is the initial (reference) position, and n the 
final one. The Hn

m matrix first three columns form the direction cosines of the directions 
(Rn

m) while the last column the position vector (dn
m) [40]. 

Given that the repositioning of human kinematic chains is based on rotational 
movements (figure 5), the homogeneous matrix in this case is based on homogeneous 
rotational transformations. The simple rotation matrices about the axes Oi-1x-i, Oi-1y-i and 
Oi-1z-i respectively are given by equations 1, 2 and 3. 

 
Figure 5. Homogeneous rotational transformation around the Oy axis of the reference system. 
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4.2. Human upper limb kinematic model 
In this paper a kinematic model of the upper limb was developed with the respect of 

the simplifying assumptions and the anatomical considerations presented previously. 
This model is an open kinematic chain with 6 degrees of freedom that can simulate the 
anatomical behavior of the human upper limb during biped walking (figure 6).  

The shoulder joint and the hand joint are each considered as a superposition of two 
cylindrical joints. Thus, were associated 2 degrees of freedom to the shoulder joint, 1 
degree of freedom to the elbow joint, 2 degrees of freedom to the hand joint, and 1 degree 
of freedom to the finger joint. Based on this model, the successive positions described by 
an end-effector positioned on the fingertips were analyzed. Figure 6 show the kinematic 
model with 6 degrees of freedom. As can be seen, the shoulder and hand joints are 
represented as overlays of simple rotational joints. 

 
Figure 6. The 6-degree-of-freedom kinematic model of the human upper limb. Point O represents 
the shoulder joint (origin of the system), point A represents the elbow joint, point B represents the 
hand joint, and point C represents the finger joint. 

Figure 4 illustrates the coordinate systems and the axis orientation of the kinematic 
chain joints. The anatomical system origin (O0x0y0z0) is in the shoulder joint. The other 
coordinate systems are positioned in joints having their origins shifted in accordance with 
the anatomical dimensions of the kinematic elements (table 1). The kinematic elements 
(skeletal system) are considered in this case as rigid elements. According to homogenous 
transformation theory, the O6x6y6z6 system copies the orientation of the O5x5y5z5 system 
and represents the position of the end-effector positioned on the fingertips. The zi axes for 
i∈[0,5] are the axes associated with the rotational movements generated by kinematic 
chain joints. 

In figure 7 the joints represented with the blue shade produce flexion-extension 
movements, and those with the green shade abduction-adduction. For this study, was 
considered as data for the simulation, values in correspondence with those from the 
previously presented norms. According to specialized literature, the human upper limb 
is the kinematic chain with the highest degree of mobility. 



Balneo and PRM Research Journal 2023, 14, 3 8 of 11 
 

 

 
Figure 7. Graphical representation of the joint coordinate systems of the human upper limb 6 
degrees of freedom kinematic model and the effector positioned on the fingertips. 

4.3. Mathematical modeling of the human upper limb 
The configuration of end-effector frame O6x6y6z6 with the respect to the base frame 

O0x0y0z0 (shoulder joint) is given by the equation 7. The H6
0 matrix is a matrix product of 

the 6 homogeneous transformation matrices (∏ Hi
i-16

i=0 ) .). The general transformation 
matrix contains information about the displacement vector (di

i-1) and the rotational matrix 
(Ri

i-1) in a triortogonal system for each joint (movement). The result of the matrix product 
contains information about plane or spatial displacement of the end-effector. Depending 
on the complexity, it can contain projections on all planes if the displacement is spatial 
(r= rxi+ryj+rzk) or in the plane if it is a parallel plane movement (r= rxi+ryj or r= rxi+rzk).In 
equation 7, some symbolic notations were made for the trigonometric functions (c for cos 
and s for sine). 

Ri
i-1=R(θi,zi-1)·Ii

i-1 (4) 

di
i-1= �

0
0
0
� 

(5) 

Hi
i-1= � Ri

i-1 di
i-1

0 0 0 1
� (6) 
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0=�Hi
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6
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0
0
0
1
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0
0

0
0
1
0
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0
0
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0
1
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0
0

0
0
-1
0
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cθ3
0
0
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0
1
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0
0

0
0
1
0
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0
0

0
0
0
1
� · 

· �
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sθ5
0
0
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0
0

0
0
1
0

l3·0.5·cθ5
l3·0.5·sθ5

0
1
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0
0

-sθ6
cθ6
0
0

0
0
1
0

l3·0.5·cθ6
l3·0.5·sθ6

0
1

� 

(7) 

5. Conclusions 
In this research paper, a novel approach in domain of biomechanics was used to 

quantify the displacement vector ( r= rxi+ryj+rzk  for 3D movement, and r= rxi+ryj  or 
r= rxi+rzk for plane displacement) resulting from a positional analysis of the human upper 
limb. The method approached is that of homogeneous rotation transformations. This 
method involves determining the rotation matrix and the displacement vector for each 
joint (movement) studied in relation to the reference joint witch is the global reference 
system. In this case (O0x0y0z0). The direct result is represented by the scalar components 
of the displacement vector described by the end-effector. The end-effector is theoretical 
point located at the tip of the fingers. In table 5 are presented the numerical results of the 
mathematical model simulation for all 3 cases, 10 positions each.  
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The mathematical model was developed using the python programming language, 
which is a fast and efficient language used by researchers all over the world for developing 
high end solutions.  

Table 5. The End-effector displacement vector scalars for all 3 cases. 

End-
effector 
position 

nr. 

End-effector 
displacement vector 

scalars (2DoF) 

End-effector 
displacement vector 

scalars (4Dof) 

End-effector 
displacement vector 

scalars (4Dof) 
x(m) y(m) z(m) x(m) y(m) z(m) x(m) y(m) z(m) 

Pos.1 0,740 0,0 0,0 0,740 0,0 0,0 0,740 0,0 0,0 
Pos.2 0,727 0,136 0,0 0,564 0,0 0,458 0,554 0,105 0,457 
Pos.3 0,710 0,206 0,0 0,238 0,0 0,656 0,225 0,076 0,655 
Pos.4 0,685 0,274 0,0 0,024 0,0 0,667 0,015 0,029 0,666 
Pos.5 0,654 0,339 0,0 -0,388 0,0 0,313 -0,362 -0,137 0,313 
Pos.6 0,622 0,395 0,0 -0,455 0,0 0,306 -0,406 -0,202 0,305 
Pos.7 0,556 0,487 0,0 0,081 0,0 0,638 0,053 0,063 0,637 
Pos.8 0,689 0,267 0,0 0,502 0,0 0,501 0,467 0,185 0,500 
Pos.9 0,727 0,136 0,0 0,683 0,0 0,260 0,671 0,126 0,260 
Pos.10 0,740 0,0 0,0 0,740 0,0 0,0 0,740 0,0 0,0 

Author Contributions: Conceptualization, E.M. and D.G.; methodology, M.M.N., E.M. and N.T.; 
software, M.M.N. and D.G.; validation, E.M., C.M. and D.G.; formal analysis, M.M.N.; investigation, 
N.T.; resources, N.T.; writing—original draft preparation, M.M.N., writing—review and editing, 
E.M., C.M. and D.G.; visualization, M.M.N. and N.T.; supervision, D.G. and E.M. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflict of interest. 
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