ROMANIAN BALNEARY POTENTIAL

Delia Cinteza
Constantin Munteanu

NATIONAL INSTITUTE OF RHEABILITATION, PHYSICAL MEDICINE AND BALNEOCLIMATOLOGY
ROMANIAN ASSOCIATION OF BALNEOLOGY
BRIEF HISTORY OF ROMANIAN BALNEOLOGY

National Institute of Rehabilitation, Physical Medicine and Balneoclimatology was established in 1924 as "Institute of Balneology" through sustained endeavor of personalities of the time - medical and non-medical: the Ministry of Health, Red Cross, Romanian Patriarchy, the Ministry of Defense and other institutions.

To note that at that time was the second institute of its kind in Europe (after that from France).
MEDICAL USES OF NATURAL THERAPEUTIC

Specialists in rehabilitation, physical medicine and balneology are involved in treating specific diseases generating functional impairments:

a) traumatic disorders;
b) musculoskeletal disorders;
c) inflammatory rheumatic diseases;
d) cardiovascular disease;
e) respiratory diseases;
f) gynecological diseases;
g) dermatological;
h) neurological disorders;
i) neuropsychomotor disease;
Geological and hydrological surveys on natural therapeutic resources

Geological research is completed by synthesis materials (studies, reports, etc.) together with cartographic materials. Based on the conclusions of these materials we obtain detailed economic knowledge to capitalize therapeutic mineral resources.
BIOCLIMATIC STUDIES

Working procedure for bioclimatic research refers to processing specialized climate and microclimate data, leading to value estimation of bioclimatic indices. Among these factors are mentioned:

- Thermal comfort index (based on actual temperature equivalent, determined using temperature, humidity, and wind intensity);

- Skin climatic stress index (on feeling hot / cold felt by the human body, depending on air temperature and wind intensity);

- Lung climate stress index (based on the feeling of hydration / dehydration of the lung lining, depending on water vapor pressure of the atmosphere);

- Total bioclimatic stress index (summing the values of the two previous climate stress).

- Other bioclimatic indices as air ionisation, etc.
Quality of natural factors is determined by their effective physico-chemical properties: mineral or organic composition, gases dissolved, suspended particles, living organisms.
Microbiological analysis of natural therapeutic factors

Microbiological analysis of different samples is done for preventive, diagnostic, prognostic or therapeutic aim.

Biologist working in a microbiology laboratory is responsible for correct sampling, laboratory analysis of the sample, validation of results and confrontation with complementary data (clinical, epidemiological and so on), thus indirectly participated in interpreting the results.
Physiological and pharmacodynamics research

Knowledge of general problems concerning the effects of natural factors, location and their mechanism of action, is of fundamental importance for a rational therapy.

The biological activity of natural factors requires an initial interaction of their chemical or physico-chemical components with molecules of living matter. The primary action at the molecular level, triggers a complex reaction, resulting overall pharmacological global effect.

Pharmacodynamic effect is the result of complex reactions triggered in the body of the primary action. A drug does not create new functions in the body, but only accelerates or reduces disturbed physiological processes.
ADVANCED RESEARCH AT CELLULAR AND MOLECULAR LEVEL

The in vitro studies allows evaluation of cell morphology, protein synthesis, secretion of certain substances, cell metabolism, cellular receptors interaction with different ligands, uptake or release of electrolytes or other types of substances that reach the cellular environment.

Assessing changes at cellular and molecular level can be achieved by optical microscopy studies, for cell morphology, cell viability studies, immunohistochemistry studies, proteomic studies carried out by techniques including electrophoresis and Western blotting, determination of the biochemical parameters in the culture media, cell physiology studies, studies on cellular senescence, cell signaling studies.
ADVANCED RESEARCH AT CELLULAR AND MOLECULAR LEVEL
ADVANCED RESEARCH AT CELLULAR AND MOLECULAR LEVEL
Clinical studies for testing therapeutic efficacy of natural factors

Selection and recruitment of suitable study participants - time sensitive consultation is likely to be longer than in normal situations.

The concept of obtaining informed consent is considered the basic principle of GCP.

Integrated Model of curative spa takes place under experimental and clinical research conducted, leading to a scientific background, biological and medical updated, achieved by modern experimental techniques and clinical trials.
Glial effects of the lithium mineral water Maria from Malnas-Bai

Constantin Munteanu, MBio1, Gabriela Zamfirescu, PhD1, Diana Munteanu, MBio1, Delia Cinteza, MD PhD1

ABSTRACT

Objectives: To investigate the influence of lithium mineral waters and lithium salts upon the differentiation of glial cells.

Material and methods: Mixed glial cultures were prepared from neonatal Wistar rat cortex. Cultures derived from neonatal rat forebrain develop with a monolayer or large flat astrocytes attached to the culture dish, with many smaller cells of the oligodendrocytes lineage on their surface.

Results: Treatment of these cultures with lithium mineral waters from Maria spring compared to treatment with lithium chloride 2 mM showed significant differences in cell morphology. Immunohistochemical studies for glycogen synthase kinase (GSK-3β) supported the protective effects of lithium mineral waters for glial cells, whereas lithium chloride 2 mM determined cytopathic effects and inhibited Wnt signalling pathway.

Conclusions: The results of this study indicate the fact that lithium chloride and lithium mineral waters induce changes in glial cells. The changes depend on the lithium level in the culture medium.

Keywords: lithium, glial cells, GSK-3β, GFAP, laminin, vimentin

Table 1: Chemical content of Maria mineral water

GSK-3β expression after treatment of glial cells with lithium and Maria lithium mineral water from Malnas-Bai

Constantin Munteanu, MBio1, Diana Munteanu, MBio1, Delia Cinteza, MD, PhD1

“Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania

Abstract: To investigate the influence of lithium mineral waters and lithium salts upon the expression of GSK-3β in glial cells.

Materials and methods: Mixed glial cultures were prepared from neonatal Wistar rat cortex. Cultures derived from neonatal rat forebrain develop with a monolayer or large flat astrocytes attached to the culture dish, with many smaller cells of the oligodendrocytes lineage on their surface.

Results: Treatment of these cultures with lithium mineral waters from Maria spring compared to treatment with lithium chloride 2 mM showed significant differences in cell morphology. Immunohistochemical studies for glycogen synthase kinase (GSK-3β) supported the protective effects of lithium mineral waters for glial cells, whereas lithium chloride 2 mM determined cytopathic effects and inhibited Wnt signalling pathway.

Conclusions: The results of this study indicate the fact that lithium chloride and lithium mineral waters induce changes in the expression of GSK-3β.
Exploration of the speleotherapeutic potential through the cellular and molecular biology techniques

Munteanu C., Munteanu D., Simionca I., Cinteza D., Hoteteu M.;

Abstract
Objective: Exploring the speleotherapy effects on morphology and physiology of dermal and pulmonary fibroblast obtained from Wistar rats tissue in normal conditions and after induction of experimental “astma” awareness with ovalbumin.

Materials and methods:
Dermal and pulmonary fibroblast cultures were initiated by enzymatic techniques from appropriate tissue taken of each group Wistar rats. Morphological monitoring was done by phase contrast microscopy; biochemical and molecular changes of cultures obtained from animals treated speleothropic compared to control, was experimental established by electrophoresis and Western Blotting techniques.

Results: Experimental data revealed the expression of several proteins after the speleotherapeutic treatment. These data were analysed compared with control, using a specific software.

Conclusions: Speleotherapeutic treatment of Wistar rats caused significant differences in morphology and protein expression of dermal and pulmonary fibroblast grown in the laboratory. These differences support the protective effects of speleotherapy compared with data obtained from animals untreated and sensitized with ovalbumin, having induced experimental asthma status.
Health effects attributed to endocrine disrupting compounds from mud and lake waters sources

INTRODUCTION

Endocrine disruptors are substances that "interfere with the synthesis, secretion, transport, binding, action, or elimination of natural hormones in the body that are responsible for development, behavior, fertility, and maintenance of homeostasis (normal cell metabolism)." They are sometimes also referred to as hormonally active agents, endocrine disrupting chemicals, or endocrine disrupting compounds (EDCs).

EDC studies have shown that endocrine disruptors can cause adverse biological effects in animals, and low-level exposures also cause similar effects in human beings. The term endocrine disruptor is often used as synonym for xenohormone although the latter can mean any naturally occurring or artificially produced compound showing hormone-like properties (usually binding to certain hormonal receptors). The term endocrine disruptor was coined at the Winograd Conference Centre in Wisconsin, in 1991. One of the early papers on the phenomenon was by Theo Colborn in 1993.

Clinical data suggest that peliosis therapy is useful in preparing the uterus for in vitro fertilization, but without scientific evidence. Mud and water from Bear Lake must be analyzed, both in terms of physico-chemical, microbiological and in terms of phyto-and zooplankton to detect organisms that grow in the lake and are structural and biological determinants of sludge role in transport, binding, action, or elimination of natural hormones in the body that are responsible for development, behavior, fertility, and maintenance of homeostasis (normal cell metabolism). They are sometimes also referred to as hormonally active agents, endocrine disrupting chemicals, or endocrine disrupting compounds (EDCs).

Salt and mud from lake Usua heliothermal contain hormones released by Artemia salina: human estrogen-like SU 95%, respectively human progesterone-like 0.7 to 0.8 mg%. (Stoicescu Munteanu, 1977). They are used to treat gynecological diseases: ovarian failure, infertility, etc.

Action: (Sterility) is a health problem affecting 15% of couples of reproductive age. Today only a few are known about causes and treatment options involved in the pathology of infertility, while a number of issues remain unknown. Sapropelic mud and salt water have a high content of salt and human-like estrogen and progesterone hormones (liberated by Artemia salina arthropode). High temperature of mud and salt water increases local circulation, implicitly the absorption of salt and hormones. Salt decreases local inflammation, heals genital lesions. Hormones, with almost the same chemical structure as the human ones, are overdrawn by ovaria, hypophysis and hypothalamus as own, effectively stimulating and balancing the own hormonal synthesis. Ovulation synthesis of estrogen and progesterone increases, regulating menstruations, optimizing vaginal pH and ovulation and prepare uterus for egg implantation.

MATERIALS AND METHODS

Primary cultures of neonatal rat cardiomyocytes were prepared as previously described (12). Briefly, 1- to 2-day old Wistar rats were euthanized, hearts excised and ventricles minced in phosphate-buffered saline solution. Serial dilution with 0.125% trypsin were performed at 37°C; cell pellets were resuspended in Dulbecco's Modified Eagle's Medium Nutrient Mixture F-12 HAM (DMM/F12) with 10% fetal calf serum, 100 UI/ml penicillin, 100 µg/ml streptomycin.

Estradiol Treatment - The 3 days cells cultures were treated with 125 µg/ml 17β-estradiol for 48h. H2O2 Treatment - Cells were treated with 10, 25 and 50 µM H2O2 by replacing the culture medium with serum-free medium containing H2O2.

Structural Changes Following H2O2 Treatment

Immunohistochemical staining was performed using mouse monoclonal anti-α-sarcomeric actin and monoclonal anti-sarcromeric troponin antibodies. Cardiomyocytes contraction rate - The mean contraction rate of 10 myocytes / culture well was determined microscopically.

Na⁺/K⁺-ATPase Activity - ATP-hydrolysis was measured at 37°C following the method of Garner (3). Na⁺/K⁺-ATPase -dependent ATP hydrolysis is reported as nmoles Pi released/h.

The coronary heart disease (CHD) produces 1/5 from all deaths. Premenopausal women have a low incidence of coronary heart disease, which rises rapidly after the menopause towards incidence levels observed in men (1, 7). Many studies show that estradiol reduces ischemia / reperfusion lesions (5, 6, 8, 9, 11). The estradiol effects on cardiovascular system are multiple and the action mechanisms are not completely understood. The aim of the present study was to characterize the effect of 17β-estradiol on cardiomyocytes contractile function under oxidative stress conditions.

RESULTS AND DISCUSSIONS

Structural Changes Following H2O2 Treatment - The oxidative stress produces α-actinin immunohistochemical reaction alteration proportionally with the H2O2 concentration (Fig. 1-3). On 50 µM H2O2 concentration no reaction was observed. Following estradiol treatment, α-actinin was detected in all of the three experiments (Fig. 4-7), α-tropomyosin was detected in cardiomyocytes with oxidative stress at all H2O2 concentrations with an altered morphology (Fig. 9-11). The estradiol treatment partly counteracts the effects of oxidative stress.

Cardiomyocytes contraction rate - The 10 µM H2O2 induces a decrease with 34% of contraction number while at the 25 and 50 µM H2O2 no contractions were observed. Estradiol treatment produces a decrease with 56% of contraction number and no contractions were observed at 25 and 50 µM H2O2.

Na⁺/K⁺-ATPase Activity - Oxidative stress induces a significant decrease of Na⁺/K⁺-ATPase activity proportionally with H2O2 concentration. Estradiol treatment partly protects the Na⁺/K⁺-ATPase activity.

CONCLUSIONS

Oxidative stress is associated with muscle protein modifications. At high doses of H2O2, α-actin and troponinfilaments aspect is dramatically changed. The alteration of cardiomyocytes contractility is a complex process that involves changes of protein activity at multiple cellular levels. Estradiol treatment attenuates the effects of H2O2 upon muscle proteins.
LITHIUM – TRACE ELEMENT WITH NEUROLOGICAL EFFECTS IN AFECTIVE DISORDERS

Munteanu C.1, Munteanu D.1, Cinteza D.2

1 Physiology, Cell Cultures, National Institute of Rehabilitation, Physical Medicine and Balneoclimatology, Romania
2 Research and Medical Department, National Institute of Rehabilitation, Physical Medicine and Balneoclimatology, Romania

INTRODUCTION
Many authors proposed that lithium is a good treatment for migraine and bipolar disorders. We intend to use lithium mineral waters, defined as natural therapeutic factors, with lithium at safe concentrations, in prophylaxis of anxiety and bipolar depression.

One important question that arises for any psychiatrist is if the lithium content of the mineral water can or not has a therapeutic or a prophylactic value. An initial answer is that preliminary studies on glial cell cultures showed a significant modification in cell biochemistry and morphology. These modifications constitute an argument for us to go on with future experiments to clarify this issue. Secondly, if we look to the concentration values we have to remark that one liter of water contains 1.1 mEq of lithium. This concentration is important for us, in our intention to reach progressively the therapeutic index of the lithium ions.

MATERIALS AND METHODS
The primary glial cell cultures were initiated from the brain of Wistar rat pups aged 1-3 days, in keeping with known techniques. After the meninx is removed, the brain is passed through a 60µm nylon and the cells thus obtained are directly plated on glass Petri dishes with a 60 mm diameter.

The cells have been grown in a DMEM medium (Sigma), with 4500 mg/dl of glucose, 25 mM HEPES, 100-u/ml penicillin and 100 µg/ml streptomycin (Sigma). The medium was supplemented with 15% calf fetal serum (Gibco). The medium was first replaced after 24 hrs and then every three days. The primary cells cultures will be maintained in a humidified atmosphere, at 37°C, with 5% CO2.

The initial primary cultures most likely contained neurons, astrocytes, oligodendrocytes, other glial cells, endothelial cells and undifferentiated cells. The shaking method of separating cells allowed for the selection of astrocytes, which are more readily adherent.

Although the cultures were determined to be highly pure, the astrocytes presented showed a great variation in morphology. One reason for this variety could be the aphysiological conditions under which the cells were grown. Normally, cells in the brain grow at an oxygen concentration of about 2%. Atmospheric oxygen concentrations are usually 20%; at high oxygen concentration, many cells in the body have been shown to exhibit unusual morphologies.

GFAP is a very sensitive and specific marker for rapid astrocytic response to injury and disease. Increase of GFAP in astrocytes occurs gradually with age and there is a wide variation in the collection and processing of cells. The concentration values we have to remark that one liter of water contains 1.1 mEq of lithium. This concentration is important for us, in our intention to reach progressively the therapeutic index of the lithium ions.

METHODS
The inositol polyphosphate phosphatases selectively remove phosphate groups from various phosphatidylinositols, which generate second messengers in response to extracellular signals. SHIP regulates intracellular calcium concentrations and may also modulate the Rap signalling pathway.

Our results reflect a cortical reaction for SHIP in the control glial cultures, but the distribution of SHIP proteins becomes heterogenic in the case of lithium treatment with 2mM LiCl.

Immuno-histochemical detections of GSK-3β were made by an indirect immunoperoxidase method. GSK-3β plays a critical role in the nervous system by regulating various cytoskeletal processes as well as long-term nuclear events, its inhibition may underlie some of the long-term therapeutic effects of mood-stabilising agents. The results presented here suggest that at 2 mM LiCl the inhibition of GSK-3β expression is much accentuated and this correspond to the majority of papers which indicate GSK-3β as main target of lithium action.
For spa, the importance of fundamental research equates to promote knowledge spas by natural factors with therapeutic potential underlying medical activity, identifying the biological mechanisms by which cellular and molecular level natural factors acting on the body and its response to physiological body can use in trying to adapt the stimulation provided by therapeutic factor.

A strategy for Romanian spa tourism potential will allow repositioning its domestic and international. The success of this action depends on the involvement of policy makers decided macro and microeconomic and use scientific research to promote climatic spa tourism.
Inchiderea unei Protocol de Colaborare între Institutul Național de Recuperare, Medicină Fizică și Balneoclimatologie, Organizația Patronală din Turismul Balnear și Asociația Română de Balneologie și al Protocolului de afiliere al Asociației Române de Balneologie la Societatea Internațională de Hidrologie Medicinală reprezintă garantia dorinței de colaborare și de implicare în dezvoltarea balneologiei a participanților la eveniment.

SOVATA, 12 Mai 2012

Presedinte,
Prof. Dr. Mufid Zeki Karagülle
Vicepreședinte,
Dl. Nicu Rădulescu
Vicepreședinte,
Dr. Biol. Iuri Simionca
Manager,
Dr. Horia LARARESCU
Președinte,
Dl. Nicu Rădulescu
Președinte,
Conf. Dr. Delia Cineșteș
Vicepreședinte,
Dr. Daniela Poenaru
Secretar General,
Dr. Constantin Munteanu
Director General,
Dr. Farcas V
Primar,
Ec. Tudor Stefănie
Director General,
Dr. Ing. Ovidiu Mera
Conf. Dr. Olga Surdu
Dr. Adrian Papa
Dr. Suzana Pretorian
Dr. Dan Giurca

Societate Internațională de Hidrologie Medicală
Asociația Europeană a Statuini Balnear - ESPA
Comisia Permanențiă de Speleoterapie, UIS – Afișată UNESCO
Institutul Național de Recuperare, Medicină Fizică și Balneoclimatologie
Organizația Patronală din Turismul Balnear

Asociația Română de Balneologie

Ministerul Sănătății
Primăria Municipiului Turda
Torda Salina Durgău S.A.
Sanatoriul Balnear și de Recuperare Techerghiol
Complexul Balnear Olănești
Statuinea Sovata
Statuinea Silnic Moldova
Statuinea Ocna Sibiului
PROTOCOL DE COLABORARE

Institutul Național de Recuperare, Medicină Fizică și Balneoclimatologie, reprezentat prin Domnul Horia Lazărescu, Manager;

Organizația Patronală a Turismului Balnear din România persoană juridică fără scop patrimonial, reprezentată prin Domnul Nicu Radulescu, Președinte;

Asociația Română de Balneologie, reprezentată prin Doamna Delia Cîntează, Președinte și Domnul Constantin Munteanu, Secretar General

Numite mai jos Parti,

Reluând protocolul existent în prezent între Institutul Național de Recuperare, Medicină Fizică și Balneoclimatologie și Organizația Patronală a Turismului Balnear, părțile își exprimă dorința de a colabora pentru dezvoltarea și promovarea turismului balnear din România.

În acest sens, părțile sunt de acord să depună toate eforturile pentru realizarea următoarelor obiective:

1. Informare reciprocă și sprijin privind activitățile proprii din domeniul turismului balnear la nivel național și internațional;

2. Realizarea unei bune colaborări și sprijin reciproc pentru inițierea și punerea în practică a unei legislații menite să contribuie la desfășurarea unui turism balnear la standarde de calitate existente la nivel european;

3. Collaborare și sprijin reciproc în relația cu alte instituții ale statului, autorități locale sau organisme non-guvernamentale din țară și străinătate;

4. Realizarea de acțiuni de informare și de training la nivelul managementului societăților și a personalului specializat pentru practicarea unor servicii de calitate competitive pe plan european în domeniul turismului balnear;

5. Realizarea de acțiuni comune de promovare și a unor materiale de informare cu prezentarea potențialului factorilor naturali terapeutici, a serviciilor medicale disponibile în stațiunile balnear, a măsurilor de protecție a factorilor de curăți și a unor noutăți în domeniu.

Activitățile de mai sus care necesită costuri financiare, se vor realiza cu suportarea acestora de către fiecare Parte, în comun sau în reciprocitate, după cum vor conveni Părțile pentru fiecare caz.

Părțile vor conveni, în termen de o luna de zile de la semnarea Protocolului, un program detaliat privind activitățile propuse pentru primul an de colaborare.

Protocolul se încheie pe o perioadă de doi ani, cu drept de reînnoire automată pentru o perioadă similară, dacă partile nu convin altfel.

Protocolul intra în vigoare la data semnării lui.

Semnat în 3 exemplare originale, la Sovata, azi, 10 mai 2012.

Institutul Național de Recuperare, Medicină Fizică și Balneoclimatologie
Manager, Horia Lazărescu

Organizația Patronală a Turismului Balnear din România
Președinte, Nicu Radulescu

Asociația Română de Balneologie
Președinte Delia Cîntează
AFFILIATION PROTOCOL TO THE INTERNATIONAL SOCIETY OF MEDICAL HYDROLOGY AND CLIMATOLOGY

Considering the mission of The International Society of Medical Hydrology, the objectives and scope of the Romanian Balneology Association, the common interest of the two organisations in the domain of balneology and climatology as well as the agreed upon vision on a better cooperation for an improved valorization of the natural therapeutic factors through the balneary and health tourism,

The Romanian Association of Balneology expresses its desire to become affiliated to the International Society of Medical Hydrology, represented by the President, Prof. Mufit Zeki Karagülle PhD.

The International Society of Medical Hydrology and Climatology, by signing the present protocol of affiliation confers the position of member to The Romanian Balneology Association, represented by the President, Reader Delia Cinteza, PhD, and the Secretary General, Constantin Munteanu, PhD.

Sovata, May 12 2012

The International Society of Medical Hydrology and Climatology

President, Prof. Mufit Zeki Karagülle, PhD

Romanian Association of Balneology

President, Conf. Delia Cinteza, PhD

Secretary General
Constantin Munteanu PhD
CONFERINȚĂ NAȚIONALĂ DE SPELEOTERAPIE

WITH INTERNATIONAL PARTICIPATION

SALINA TURDA

06-08 OCTOMBRIE 2011

PROGRAM

Inscriere: secretar@bioclima.ro www.balneoclima.ro

First announcement

THE XIV INTERNATIONAL SYMPOSIUM OF SPELEOTHERAPY, 2012

We have the honor to inform that the XIV International Symposium of Speleotherapy organized by the Permanent Commission on Speleotherapy (PCS) / Commission permanente de spéléothérapie (CPS) - Department of Research / Département de la recherché scientifique - UIS, affiliated to UNESCO, will take place in the town of Turda, Cluj County, Transylvania, Romania, in 4 to 6 October 2012 (Decision of the Permanent Commission on Speleotherapy - UIS, Working Committee Meeting, 27 – 28 March 2012, Ostrov u Macochy, Brno, Czech Republic - Wieliczka, Krakow, Poland. Annex 1).

On behalf of the
Permanent Commission on Speleotherapy (PCS)
Commission permanente de spéléothérapie (CPS),
Vice-President PCS/CPS, Biodr. Ph.Dr. Iuri SIMIONCA,
Principal Research Scientist II, National Institute for Rehabilitation, Physical Medicine and Balneoclimatology, Bucharest, Romania
(Bucharest-1, PC 011171, Ion Mihalache Blvd, No 11A, e-mail: simionca_iuri@yahoo.com)

Dr.ing. (geol.) Ovidiu MERA, member a working team in the matter of Researches and Development in Speleotherapy (Subterraneotherapy) in European salt mines - from Permanent Commission on Speleotherapy (PCS), General Director of C.S. Turda Salina Durgau A.S., Romania (Turda, PC 401200, Aleea Durgaua Str. No.7, e-mail: ovidiumera@yahoo.com)

Links for information:
http://www.speleotherapycommission.webgarden.com;
http://centralmed肤webgarden.ro
Asociația Română de Balneologie și INRMFB organizează în anul 2012 următoarele cursuri:

Infiltrăriile în patologia musculoscheletala; PROGRAM CURS Perioada: 23.02 – 24.02.2012,

Recuperarea medicală în afecțiuni degenerative și ortopedico-traumatice ale membrului superior (partea a II-a); PROGRAM CURS, Perioada: 29.03 - 30.03.2012.

Recuperarea medicală în traumatismele vertebromedulare Perioada: 18.10.2012 – 19.10.2012,

ROMÂNIA JUDEȚUL CLUJ MUNICIPIUL TURDA CONSILIUL LOCAL

HOTĂRÂREA NR. 39

din data de 28.03.2012

privind aprobarea unor măsuri economico-administrație necesare înființării Universității Balneare

Consiliul Local al Municipiului Turda, întrunit în sedinta ordinara în data de 28.03.2012;

Luând în dezbatere proiectul de hotărâre privind aprobarea unor măsuri economico-administrație necesare înființării Universității Balneare, proiect elaborat din inițiativa domnului Primar ec. Tudor Ștefănie;

Având în vedere raportul de specialitate al Administratorului Public, avizul comisiei de specialitate nr. 1 a Consiliului Local al municipiului Turda, buget-finanțe, prognoze economice, investiții și avizul Comisiie de specialitate nr. 5 a Consiliului Local al municipiului Turda, invatamant, cultura, sanatate, tineret, sport și turism;

Tinând cont de prevederile art. 1, art. 114 alin. 1, alin. 2 și alin. 3, ale art. 115, art. 223 din Legea 1/2011, Legea educației naționale, ale art. 1 și art. 2 din OUG 75/2005 privind asigurarea calității educației, aprobata cu modificări prin Legea 87/2006, cu modificările și completările ulterioare, precum și de prevederile Metodologiei de evaluare externă, standardele, standardele de referință și lista indicatorilor de performanță a Agentiei Romane de Asigurare a calității în Invatamantul Superior;

În temeiul prevederilor art. 36, alin. 2, lit. d, alin. 4, lit. a, alin. 5, lit. a, alin. 6, pct. 1, art. 45, alin. 1, 3 și 6, art. 115, alin. 1, lit. “b” din Legea nr. 215/2001 privind administratia publica locala și ale Regulamentului de functionare al Consiliului Local al Municipiului Turda;

HOTĂRÂȘTE:

Art. 1. Se aprobă derularea proceurilor de înființare a Universității Balneare, cu sediul în municipiul Turda, Piața Republicii, nr. 5.

Art. 2. Se aprobă atribuirea cu titlu gratuit către Asociația Română de Balneologie a imobilului situat în municipiul Turda, Piața Republicii nr. 5, în vederea înființării sediului Universității Balneare.

Art. 3. Se aprobă atribuirea unui număr de 40 de locuri destinate cazarii studentilor Universității Balneare, disponibile în unitatele de invatamant de pe raza administrativ –teritorială a municipiului Turda.

Art. 4. Se aprobă punerea la dispoziție cu titlu gratuit a obiectivului Salina și a bazei de tratament, în vederea înființării Universității Balneare și efectuării activității de cercetare științifică, către Asociația Română de Balneologie.

Art. 5. Se aprobă punerea la dispoziție cu titlu gratuit a bazei de tratament Potaissia, în vederea înființării Universității Balneare și efectuării activității de cercetare științifică, către Asociația Română de Balneologie.

Art. 6. Se aprobă punerea la dispoziție cu titlu gratuit a perimetrului cu resurse naturale terapeutice localizat în zona Valea Sarata, Baile Sarate Turda, în vederea înființării Universității Balneare și efectuării activității de cercetare științifică, către Asociația Română de Balneologie.

Art. 7. Se aprobă alocarea de la bugetul local al municipiului Turda a echivalentului in lei a sumei de 5.000 euro, către Asociația Română de Balneologie în vederea acoperirii cheltuielilor premergătoare înființării Universității Balneare.
Thank you!

Dr. Biol. Constantin Munteanu

www.bioclima.ro
Email: secretar@bioclima.ro